Network Working Group A. Barbir Request for Comments: 3914 Nortel Networks Category: Informational A. Rousskov The Measurement Factory October 2004 Open Pluggable Edge Services (OPES) Treatment of IAB Considerations Status of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2004). Abstract IETF Internet Architecture Board (IAB) expressed nine architecture- level considerations for the Open Pluggable Edge Services (OPES) framework. This document describes how OPES addresses those considerations. Babir & Rousskov Informational [Page 1] RFC 3914 OPES Treatment of IAB Considerations October 2004 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Consideration (2.1) 'One-party consent' . . . . . . . . . . . 3 4. Consideration (2.2) 'IP-layer communications' . . . . . . . . 4 5. Notification Considerations . . . . . . . . . . . . . . . . . 5 5.1. Notification versus trace. . . . . . . . . . . . . . . . 6 5.2. An example of an OPES trace for HTTP . . . . . . . . . . 8 5.3. Consideration (3.1) 'Notification' . . . . . . . . . . . 9 5.4. Consideration (3.2) 'Notification' . . . . . . . . . . . 10 6. Consideration (3.3) 'Non-blocking' . . . . . . . . . . . . . . 10 7. Consideration (4.1) 'URI resolution' . . . . . . . . . . . . . 11 8. Consideration (4.2) 'Reference validity' . . . . . . . . . . . 11 9. Consideration (4.3) 'Addressing extensions' . . . . . . . . . 12 10. Consideration (5.1) 'Privacy' . . . . . . . . . . . . . . . . 12 11. Consideration 'Encryption' . . . . . . . . . . . . . . . . . . 12 12. Security Considerations . . . . . . . . . . . . . . . . . . . 13 13. Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . 13 14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14.1. Normative References . . . . . . . . . . . . . . . . . . 14 14.2. Informative References . . . . . . . . . . . . . . . . . 14 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 15 Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 16 1. Introduction The Open Pluggable Edge Services (OPES) architecture [RFC3835], enables cooperative application services (OPES services) between a data provider, a data consumer, and zero or more OPES processors. The application services under consideration analyze and possibly transform application-level messages exchanged between the data provider and the data consumer. In the process of chartering OPES, the IAB made recommendations on issues that OPES solutions should be required to address. These recommendations were formulated in the form of a specific IAB considerations document [RFC3238]. In that document, IAB emphasized that its considerations did not recommend specific solutions and did not mandate specific functional requirements. Addressing an IAB consideration may involve showing appropriate protocol mechanisms or demonstrating that the issue does not apply. Addressing a consideration does not necessarily mean supporting technology implied by the consideration wording. Babir & Rousskov Informational [Page 2] RFC 3914 OPES Treatment of IAB Considerations October 2004 The primary goal of this document is to show that all formal IAB recommendations are addressed by OPES, to the extent that those considerations can be addressed by an IETF working group. The limitations of OPES working group to address certain aspects of IAB considerations are also explicitly documented. IAB considerations document [RFC3238] contains many informal recommendations. For example, while the IAB informally requires OPES architecture to "protect end-to-end data integrity by supporting end-host detection and response to inappropriate behavior by OPES intermediaries", the IAB has chosen to formalize these requirements via a set of more specific recommendations, such as Notification considerations addressed in Section 5.3 and Section 5.4 below. OPES framework addresses informal IAB recommendations by addressing corresponding formal considerations. There are nine formal IAB considerations [RFC3238] that OPES has to address. In the core of this document are the corresponding nine "Consideration" sections. For each IAB consideration, its section contains general discussion as well as references to specific OPES mechanisms relevant to the consideration. 2. Terminology This document does not introduce any new terminology but uses terminology from other OPES documents. 3. Consideration (2.1) 'One-party consent' "An OPES framework standardized in the IETF must require that the use of any OPES service be explicitly authorized by one of the application-layer end-hosts (that is, either the content provider or the client)." [RFC3238] OPES architecture requires that "OPES processors MUST be consented to by either the data consumer or data provider application" [RFC3835]. While this requirement directly satisfies IAB concern, no requirement alone can prevent consent-less introduction of OPES processors. In other words, OPES framework requires one-party consent but cannot guarantee it in the presence of incompliant OPES entities. In [RFC3897], the OPES architecture enables concerned parties to detect unwanted OPES processors by examining OPES traces. While the use of traces in OPES is mandatory, a tracing mechanism on its own cannot detect processors that are in violation of OPES specifications. Examples include OPES processors operating in stealth mode. However, the OPES architecture allows the use of content signature to verify the authenticity of performed Babir & Rousskov Informational [Page 3] RFC 3914 OPES Treatment of IAB Considerations October 2004 adaptations. Content signatures is a strong but expensive mechanism that can detect any modifications of signed content provided that the content provider is willing to sign the data and that the client is willing to either check the signature or relay received content to the content provider for signature verification. OPES entities may copy or otherwise access content without modifying it. Such access cannot be detected using content signatures. Thus, "passive" OPES entities can operate on signed content without the data consumer or provider consent. If content privacy is a concern, then content encryption can be used. A passive processor is no different from any intermediary operating outside of OPES framework. No OPES mechanism (existing or foreseeable) can prevent non-modifying access to content. In summary, the one-party consent is satisfied by including the corresponding requirement in the IAB architecture document. That requirement alone cannot stop incompliant OPES entities to perform consent-less adaptations, but OPES framework allows for various means of detecting and/or preventing such adaptations. These means typically introduce overheads and require some level of producer- consumer cooperation. 4. Consideration (2.2) 'IP-layer communications' "For an OPES framework standardized in the IETF, the OPES intermediary must be explicitly addressed at the IP layer by the end user" [RFC3238]. The OPES architecture requires that "OPES processors MUST be addressable at the IP layer by the end user (data consumer application)" [RFC3835]. The IAB and the architecture documents mention an important exception: addressing the first OPES processor in a chain of processors is sufficient. That is, a chain of OPES processors is viewed as a single OPES "system" at the address of the first chain element. The notion of a chain is not strictly defined by IAB. For the purpose of addressing this consideration, a group of OPES processors working on a given application transaction is considered. Such a group would necessarily form a single processing chain, with a single "exit" OPES processor (i.e., the processor that adapted the given message last). The OPES architecture essentially requires that last OPES processor to be explicitly addressable at the IP layer by the data consumer application. The chain formation, including its exit point may depend on an application message and other dynamic factors such as time of the day or system load. Babir & Rousskov Informational [Page 4] RFC 3914 OPES Treatment of IAB Considerations October 2004 Furthermore, if OPES processing is an internal processing step at a data consumer or a data provider application side, then the last OPES processor may reside in a private address space and may not be explicitly addressable from the outside. In such situations, the processing side must designate an addressable point on the same processing chain. That designated point may not be, strictly speaking, an OPES processor, but it will suffice as such as far as IAB considerations are concerned -- the data consumer application will be able to address it explicitly at the IP layer and it will represent the OPES processing chain to the outside world. Designating an addressable processing point avoids the conflict between narrow interpretation of the IAB consideration and real system designs. It is irrational to expect a content provider to provide access to internal hosts participating in content generation, whether OPES processors are involved or not. Moreover, providing such access would serve little practical purpose because internal OPES processors are not likely to be able to answer any data consumer queries, being completely out of content generation context. For example, an OPES processor adding customer-specific information to XML pages may not understand or be aware of any final HTML content that the data consumer application receives and may not be able to map end user request to any internal user identification. Since OPES requires the end of the message processing chain to be addressable, the conflict does not exist. OPES places no requirements on the internal architecture of data producer systems while requiring the entire OPES-related content production "system" to be addressable at the IP layer. Private Domain | Public Domain | Private Domain | | +--------------+ | +-------------+ +--------+ | Data | | | OPES System | |Data | | Consumer |<--- network -->| with public |<---->|Provider| | Application | | | IP address | |App | +--------------+ | +-------------+ +--------+ | | | | Figure 1 5. Notification Considerations This section discusses how OPES framework addresses IAB Notification considerations 3.1 and 3.2. Babir & Rousskov Informational [Page 5] RFC 3914 OPES Treatment of IAB Considerations October 2004 5.1. Notification versus trace Before specific considerations are discussed, the relationship between IAB notifications and OPES tracing has to be explained. OPES framework concentrates on tracing rather than notification. The OPES Communications specification [RFC3897] defines "OPES trace" as application message information about OPES entities that adapted the message. Thus, OPES trace follows the application message it traces. The trace is for the recipient of the application message. Traces are implemented as extensions of application protocols being adapted and traced. As opposed to an OPES trace, provider notification (as implied by IAB) notifies the sender of the application message rather than the recipient. Thus, notifications propagate in the opposite direction of traces. Supporting notifications directly would require a new protocol. Figure 2 illustrates the differences between a trace and notification from a single application message point of view. sender --[message A]--> OPES --[message A']--> recipient ^ V [with trace] | | +-<-- [notification] ---+ Figure 2 Since notifications cannot be piggy-backed to application messages, they create new messages and may double the number of messages the sender has to process. The number of messages that need to be proceed is larger if several intermediaries on the message path generate notifications. Associating notifications with application messages may require duplicating application message information in notifications and may require maintaining a sender state until notification is received. These actions increase the performance overhead of notifications. The level of available details in notifications versus provider interest in supporting notification is another concern. Experience shows that content providers often require very detailed information about user actions to be interested in notifications at all. For example, Hit Metering protocol [RFC2227] has been designed to supply content providers with proxy cache hit counts, in an effort to reduce cache busting behavior which was caused by content providers desire to get accurate site "access counts". However, the Hit Metering protocol is currently not widely deployed because the protocol does not supply content providers with information such as client IP addresses, browser versions, or cookies. Babir & Rousskov Informational [Page 6] RFC 3914 OPES Treatment of IAB Considerations October 2004 Hit Metering experience is relevant because Hit Metering protocol was designed to do for HTTP caching intermediaries what OPES notifications are meant to do for OPES intermediaries. Performance requirements call for state reduction via aggregation of notifications while provider preferences call for state preservation or duplication. Achieving the right balance when two sides belong to different organizations and have different optimization priorities may be impossible. Thus, instead of explicitly supporting notifications at the protocol level, OPES concentrates on tracing facilities. In essence, OPES supports notifications indirectly, using tracing facilities. In other words, the IAB choice of "Notification" label is interpreted as "Notification assistance" (i.e., making notifications meaningful) and is not interpreted as a "Notification protocol". The above concerns call for making notification optional. The OPES architecture allows for an efficient and meaningful notification protocol to be implemented in certain OPES environments. For example, an OPES callout server attached to a gateway or firewall may scan outgoing traffic for signs of worm or virus activity and notify a local Intrusion Detection System (IDS) of potentially compromised hosts (e.g., servers or client PCs) inside the network. Such notifications may use OPES tracing information to pinpoint the infected host (which could be another OPES entity). In this example, notifications are essentially sent back to the content producer (the local network) and use OPES tracing to supply details. Another environment where efficient and meaningful notification using OPES tracing is possible are Content Delivery Networks (CDNs). A CDN node may use multiple content adaptation services to customize generic content supplied by the content producer (a web site). For example, a callout service may insert advertisements for client-local events. The CDN node itself may not understand specifics of the ad insertion algorithm implemented at callout servers. However, the node may use information in the OPES trace (e.g., coming from the callout service) to notify the content producer. Such notifications may be about the number of certain advertisements inserted (i.e., the number of "impressions" delivered to the customer) or even the number of ad "clicks" the customer made (e.g., if the node hosts content linked from the ads). Callout services doing ad insertion may lack details (e.g., a customer ID/address or a web server authentication token) to contact the content producer directly in this case. Thus, OPES trace produced by an OPES service becomes essential in enabling meaningful notifications that the CDN node sends to the content producer. Babir & Rousskov Informational [Page 7] RFC 3914 OPES Treatment of IAB Considerations October 2004 5.2. An example of an OPES trace for HTTP The example below illustrates adaptations done to HTTP request at an OPES processor operated by the client ISP. Both original (as sent by an end user) and adapted (as received by the origin web server) requests are shown. The primary adaptation is the modification of HTTP "Accept" header. The secondary adaptation is the addition of an OPES-System HTTP extension header [I-D.ietf-opes-http]. GET /pub/WWW/ HTTP/1.1 Host: www.w3.org Accept: text/plain Figure 3 ... may be adapted by an ISP OPES system to become: GET /pub/WWW/ HTTP/1.1 Host: www.w3.org Accept: text/plain; q=0.5, text/html, text/x-dvi; q=0.8 OPES-System: http://www.isp-example.com/opes/?client-hash=1234567 Figure 4 The example below illustrates adaptations done to HTTP response at an OPES intermediary operated by a Content Distribution Network (CDN). Both original (as sent by the origin web server) and adapted (as received by the end user) responses are shown. The primary adaptation is the conversion from HTML markup to plain text. The secondary adaptation is the addition of an OPES-System HTTP extension header. HTTP/1.1 200 OK Content-Length: 12345 Content-Encoding: text/html